this dir | view | cards | source | edit | dark top

Zkouška

1. Introduction to Machine Learning2. Linear Regression, SGD3. Perceptron, Logistic Regression4. Multiclass Logistic Regression, Multilayer Perceptron5. MLP, Softmax as MaxEnt classifier, F1 score6. Representing Text (TF-IDF, Word2Vec)7. K Nearest Neighbors, Naive Bayes8. Correlation, Model Combination9. Decision Trees, Random Forests10. Gradient Boosted Decision Trees11. SVD, PCA, k-means12. Statistical Hypothesis Testing, Model Comparison13. Machine Learning Ethics, Final Summary

tento dokument je zveřejněn pod licencí CC BY-SA, vychází z materiálů, jejichž autory jsou Jindřich Libovický a Milan Straka

1. Introduction to Machine Learning

2. Linear Regression, SGD

3. Perceptron, Logistic Regression

4. Multiclass Logistic Regression, Multilayer Perceptron

5. MLP, Softmax as MaxEnt classifier, F1 score

6. Representing Text (TF-IDF, Word2Vec)

7. K Nearest Neighbors, Naive Bayes

8. Correlation, Model Combination

9. Decision Trees, Random Forests

10. Gradient Boosted Decision Trees

11. SVD, PCA, k-means

12. Statistical Hypothesis Testing, Model Comparison

13. Machine Learning Ethics, Final Summary